Table M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms under the Proposed Action | Radionuclide | Quantity Present (Ci) | Release Fraction | Quantity Released (Ci) | |-------------------------------|------------------------------|-------------------------|------------------------| | Depleted uranium ^a | | | | | Uranium-234 | 1.7×10^{-5} | 1×10^{-3} | 1.7×10^{-8} | | Uranium-235 | 7.4×10^{-7} | 1×10^{-3} | 8.0×10^{-10} | | Uranium-238 | 3.2×10^{-5} | 1×10^{-3} | 3.2×10^{-8} | | Krypton-83m | 1.5×10^{-1} | 1.0 | 1.5×10^{-1} | | Krypton-85 | 1.2×10^{-4} | 1.0 | 1.2×10^{-4} | | Krypton-85m | 4.2×10^{-1} | 1.0 | 4.2×10^{-1} | | Krypton-87 | 2.4 | 1.0 | 2.4 | | Krypton-88 | 1.6 | 1.0 | 1.6 | | Niobium-98 | 1.2×10^{3} | 1×10^{-3} | 1.2 | | Iodine-131 | 5.9×10^{-2} | 0.5 | 3.0×10^{-2} | | Iodine-132 | 1.5×10^{-1} | 0.5 | 7.5×10^{-2} | | Iodine-132m | 1.9×10^{-3} | 0.5 | 9.5×10^{-4} | | Iodine-133 | 6.4×10^{-1} | 0.5 | 3.2×10^{-1} | | Iodine-133m | 1.0×10^{1} | 0.5 | 5.0 | | Iodine-134 | 7.5 | 0.5 | 3.8 | | Iodine-134m | 3.8 | 0.5 | 1.9 | | Iodine-135 | 2.2 | 0.5 | 1.1 | | Iodine-136 | 2.8×10^2 | 0.5 | 1.4×10^{2} | | Technetium-134 | 2.2×10^{1} | 1×10^{-3} | 2.2×10^{-2} | | Xenon-133 | 1.2×10^{-1} | 1.0 | 1.2×10^{-1} | | Xenon-133m | 5.0×10^{-3} | 1.0 | 5.0×10^{-3} | | Xenon-134m | 1.5×10^{1} | 1.0 | 1.5×10^{1} | | Xenon-135 | 6.7×10^{-1} | 1.0 | 6.7×10^{-1} | | Xenon-135m | 3.0×10^{-1} | 1.0 | 3.0×10^{-1} | | Xenon-137 | 1.6×10^2 | 1.0 | 1.6×10^{2} | | Xenon-138 | 5.3×10^{1} | 1.0 | 5.3×10^{1} | March 2005 Appendix M-97 Table M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms under the Proposed Action (continued) | Radionuclide | Quantity Present (Ci) | Release Fraction | Quantity Released (Ci) | |--|-----------------------|--------------------|---------------------------| | Highly enriched uranium ^b | | | | | Uranium-234 | 6.9×10^{-3} | 1×10^{-3} | 6.9×10^{-6} | | Uranium-235 | 2.0×10^{-4} | 1×10^{-3} | 2.0×10^{-7} | | Uranium-238 | 1.8×10^{-6} | 1×10^{-3} | 1.8×10^{-9} | | Krypton-87 | 4.1 | 1.0 | 4.1 | | Krypton-88 | 2.6 | 1.0 | 2.6 | | Niobium 98 | 1.2×10^3 | 1×10^{-3} | 1.2 | | Iodine-131 | 5.1×10^{-2} | 0.5 | 2.6×10^{-2} | | Iodine-132 | 1.3×10^{-1} | 0.5 | 6.5×10^{-2} | | Iodine-132m | 3.0×10^{-2} | 0.5 | 1.5×10^{-2} | | Iodine-133 | 6.1×10^{-1} | 0.5 | 3.1×10^{-1} | | Iodine-133m | 9.8×10^{1} | 0.5 | 4.9×10^1 | | Iodine-134 | 7.9 | 0.5 | 4.0 | | Iodine-134m | 1.7×10^{1} | 0.5 | 8.5 | | Iodine-135 | 2.1 | 0.5 | 1.1 | | Iodine-136 | 1.8×10^2 | 0.5 | 9.0×10^1 | | Tellurium-134 | 2.0×10^1 | 1×10^{-3} | $2.0\times10^{\text{-2}}$ | | Xenon-133 | 1.2×10^{-1} | 1.0 | 1.2×10^{-1} | | Xenon-133m | 4.9×10^{-3} | 1.0 | 4.9×10^{-3} | | Xenon-134m | 3.2×10^{2} | 1.0 | 3.2×10^{2} | | Xenon-135 | 6.7×10^{-1} | 1.0 | 6.7×10^{-1} | | Xenon-135m | 1.7 | 1.0 | 1.7 | | Xenon-137 | 1.6×10^2 | 1.0 | 1.6×10^2 | | Xenon-138 | 5.6×10^{1} | 1.0 | 5.6×10^1 | | Tracers: iodine is bounding and representative | | | | | Iodine-124 | 6.2×10^{-2} | 0.5 | 3.1×10^{-2} | | Iodine-125 | 6.4×10^{-2} | 0.5 | 3.2×10^{-2} | | Iodine-126 | 1.5×10^{-1} | 0.5 | 7.5×10^{-2} | Appendix M-98 March 2005 TABLE M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms under the Proposed Action (continued) | Radionuclide | Quantity Present (Ci) | Release Fraction | Quantity Released (Ci) | |--|------------------------------|-------------------------|------------------------| | Inner containment vessel, weapons grade plutonium | | | | | (non-yield ^c) | 3 g | | | | Plutonium-238 | 1.0×10^{-2} | 1×10^{-3} | 1.0×10^{-5} | | Plutonium-239 | 1.8×10^{-1} | 1×10^{-3} | 1.8×10^{-4} | | Plutonium-240 | 4.0×10^{-2} | 1×10^{-3} | 4.0×10^{-5} | | Plutonium-241 | 9.1×10^{-1} | 1×10^{-3} | 9.1×10^{-4} | | Plutonium-242 | 2.4×10^{-6} | 1×10^{-3} | 2.4×10^{-9} | | Americium-241 | 1.6×10^{-3} | 1×10^{-3} | 1.6×10^{-6} | | Inner containment vessel, | | | | | weapons grade plutonium (with yield ^d) | 1 g | | | | Plutonium-238 | 3.4×10^{-3} | 1×10^{-3} | 3.4×10^{-6} | | Plutonium-239 | 5.8×10^{-2} | 1×10^{-3} | 5.8×10^{-5} | | Plutonium-240 | 1.3×10^{-2} | 1×10^{-3} | 1.3×10^{-5} | | Plutonium-241 | 3.0×10^{-1} | 1×10^{-3} | 3.0×10^{-4} | | Plutonium-242 | 7.9×10^{-7} | 1×10^{-3} | 7.9×10^{-10} | | Nickel-65 | 1.6×10^{-5} | 1×10^{-3} | 1.6×10^{-8} | | Niobium 96 | 3.9×10^{-6} | 1×10^{-3} | 3.9×10^{-9} | | Niobium-97 | 2.8×10^{-5} | 1×10^{-3} | 2.8×10^{-8} | | Niobium-97 | 5.5×10^{-4} | 1×10^{-3} | 5.5×10^{-7} | | Niobium-98 | 1.6×10^{-2} | 1×10^{-3} | 1.6×10^{-5} | | Molybdenum-93m | 1.3×10^{-6} | 1×10^{-3} | 1.3×10^{-9} | | Molybdenum-99 | 5.5×10^{-5} | 1×10^{-3} | 5.5×10^{-8} | | Technetium-99 | 2.2×10^{-5} | 1×10^{-3} | 2.2×10^{-8} | Source: LLNL 2003d. March 2005 Appendix M-99 Depleted uranium is already slightly radioactive; the half-life of uranium-238 (dominant isotope) is 4.5×10^9 years. The assumed composition is 99.64% uranium-238, 0.36% uranium-235, and 0.0028% uranium-234. The quantities listed correspond to the maximum additional quantity used for the proposed action of 100 g. Fission products would result from a single target (maximum of 2.2 g) subject to a 45-MJ fusion yield, 4.6×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories. Highly enriched uranium is already slightly radioactive; the half-life of uranium-235 (dominant isotope) is 7.0×10^8 years. The quantity listed corresponds to the maximum quantity used for the proposed action of 100 g. Fission products would result from a single target (maximum of 1.2 g) subject to a 45-MJ fusion yield, 4.6×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories. Thorium-232 is already slightly radioactive, with a half-life of 1.4×10^{10} yrs. The quantity listed corresponds to the maximum quantity used under the Proposed Action of 450 g. Fission products would result from a single target (maximum of 7.9 g) subject to a 45-MJ fusion yield, 5.3×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories. The assumed composition of weapons grade material is 0.02% plutonium-238, 93.85% plutonium-239, 5.8% plutonium-240, 0.3% plutonium-241, 0.015% americium-241, and 0.02% plutonium-242. Other isotopic mixes could be used as long as their impacts would be within the bounds described here. The fission products would result from a single target (maximum of 1 g) subject to a 45-MJ fusion yield, 3.2 × 10¹⁶ fissions. Because only a single experiment would occur within a containment vessel, only the fission products resulting from this single experiment are included. The fission product inventories would be peak post-experiment inventories. Ci = curies; g = gram; MJ = megajoules.